The realization space is [1 1 0 0 1 1 0 x1 x1 1 x1^2 + x1 - 1] [0 1 1 0 0 1 1 x1^2 + x1 - 1 x1^2 + x1 - 1 x1 x1^3 + x1^2 - x1] [0 0 0 1 1 1 -x1 -x1^3 - x1^2 + x1 -x1^3 + x1 -x1^2 + 1 -x1^4 + x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^12 + 4*x1^11 - 3*x1^10 - 8*x1^9 + 14*x1^8 - 14*x1^6 + 8*x1^5 + 3*x1^4 - 4*x1^3 + x1^2) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1 + 1, x1^3 + x1^2 - 1, x1^2 + x1 - 1, x1^3 - x1 + 1, 2*x1^3 - 2*x1 + 1, 2*x1^2 - 1, x1^4 + x1 - 1]